### A short Course for

### **z**Tree

Slides and Concept by Dennis Kubitza

brig Institute on Behavior & Inequality

15. Mai 2018



### Contents

- 1 Installation
- 2 Introduction
- 3 Simple Single Player Experiments

- 1 Installation
- 2 Introduction
- 3 Simple Single Player Experiments

3 / 32

- 1 Installation
- 2 Introduction
- 3 Simple Single Player Experiments

- 2 Introduction
  - General Information
    - What is z Tree ?
  - How does it work?

■ Software package for developing and carrying out economic experiments

- Software package for developing and carrying out economic experiments
- Enables easy Creation of Experiments with GUI.

- Software package for developing and carrying out economic experiments
- Enables easy Creation of Experiments with GUI.
- Capable of creating complex Experiments and Interaction through Programming

- Software package for developing and carrying out economic experiments
- Enables easy Creation of Experiments with GUI.
- Capable of creating complex Experiments and Interaction through Programming
- Provides automatic Recording for Data and Payments.

#### Website and License

All information on zTree can be found at http://www.ztree.uzh.ch/en.html including:

- Download
- License Registration
- Documentation (Manuals)

- 2 Introduction
  - General Information
  - How does it work?

## How does zTree work?

■ zTree implements a Server/Client system.

## How does zTree work?

- zTree implements a Server/Client system.
- The Server Application is called zTree.
- The Client Application is called zLeaf.

### How does zTree work?

- zTree implements a Server/Client system.
- The Server Application is called zTree.
- The Client Application is called zLeaf.

In this course we will only consider a Setup on a single PC Nevertheless it is possible to launch it in a Lab and even Online.

## Usage Example

#### Preparation

- Copy the Folder zTree, Paste it in the same directory
- Rename the Copied Folder as Example
- Download https://github.com/DennisKubitza/DennisKubitza.github.io/raw/master/zTree/example1.ztt
- Start zTree and open the .ztt file

## Usage Example

### Conducting the Experiment on your own PC

- Start a Client zLeaf
- Alt-Tab and open zTree
- Click on Background
- click on Run > Start Treatment
- Switch to the client
- Play the game

When you see the message Experiment done: Alt-Tab and choose zTree again.

- Click on Run >Clients Table
- Click on the upper Left Corner
- Click on Run > Leave Stage

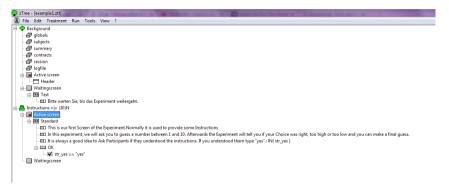
- 1 Installation
- 3 Simple Single Player Experiments

**Task:** We want to implement the example. **Goals:** 

- Understand the Usage of zTree
- Define local and global variables.
- Start first basic programming

- 3 Simple Single Player Experiments
  - The Instructions
  - The First Choice
  - Final Screen
  - Thank you for your attention

#### Create the instructions


- 1 Click on Background
- Choose Treatment > New Stage > Type the name and choose »no« for the timeout option
- Click on Active Screen
- 4 Choose Treatment > New Box > New Standard Box > OK
- **5** Choose Treatment > New Item > Write some Instructions in the Label.
- 6 Create more Items with more Instructions.

#### Create a last item:

- Ask the participant if they understood everything in the label.
- Click on Input
- Type a VARIABLE name like »str\_yes«
- Type in Layout »!string«
- Choose for MIN and MAX the value »3«
- **8** Choose Treatment > New Button > Click on Leave Stage yes > OK
- 9 Choose Treatment > New Checker
  - Type in the Condition »str\_yes == "yes«<</p>

Your are done.

## Check what you did.



### What did we do?

- 2 We created a new Stage. Every Participant has to go through each stage. We can define a Time when the Treatment automatically ends. But we said »no«
- $\blacksquare$  We created a new box that can be displayed. A Stage can consist of more than 1 box. We can choose which boxes are displayed for which participant.
- We defined a Input Field AND a Variable
  - The Input Field accepts Strings as we typed »!string«
  - The Input Field accepts Strings of length 3 as we set MIN and MAX to 3
  - We saved the Input as a Variable with name »str\_yes«
  - This variable can only be accessed in the Descendent Branch of the Tree
- 8 We Defined a Button. Buttons can put a Player in the next Stage.
- Me Defined a Check for the button.
  - The Check defines a simple Program
  - Every time the Parent is pushed, the Program is executed
  - Only if the Condition evaluates as "true", the button is executed.
  - We can use all variables, that are defined above the checker in the Tree Hierachy

- 3 Simple Single Player Experiments
  - The Instructions
  - The First Choice
  - Final Screen
  - Thank you for your attention

### The First Choice

- Click on Instructions
- Choose Treatment > New Stage > Type the name »First\_Choice« and choose »no« for the timeout option
- 3 Click on logfile
- Choose Treatment > New Programm > Choose Subjects > Write in PROGRAMS int\_hidden\_number = rounddown(11\*random(), 1); int\_first\_guess = 0; str\_first\_guess\_was = "";
- 5 Create a new Standard Box

- 6 Create a new Item
  - Type as Label: »Guess a number between 0 and 10«
  - Click on Input
  - Type a VARIABLE name like »int\_first\_guess«
  - Type in LAYOUT»1«
  - Choose for MIN the value »0«
  - Choose for MAX the value »10«

#### The First Choice

Ochoose Treatment > New Programm > Write in PROGRAMS: if ( int\_first\_guess < int\_hidden\_number) {</pre> str first guess was = "too low": elsif ( int\_first\_guess > int\_hidden\_number){ str first guess was = "too high": else { str first guess was = " on point";

Your are done.

# Check what you did.

```
zTree - [example1.ztt]
File Edit Treatment Run Tools View ?
FI - Background
    @ globals
     @ subjects
     Summary
     @ contracts
     @ session
     @ logfile
   subjects.do ( int hidden number = rounddown(11*random(), 1) ... )
   Active screen
       Header
  →  Waitingscreen
     H-IIII Text
          III Bitte warten Sie, bis das Experiment weitergeht.
  A Instructions =I= (30)N
  Active screen
     th First Standard
          III In this experiment, we will ask you to guess a number between 1 and 10. Afterwards the Experiment will tell you if your Choice was right, too high or too low and you can make a final guess.
          III It is always a good idea to Ask Participants if they understood the instructions. If you understood them type "yes": IN( str yes )
        OK
             str_yes == "yes"
    - Waitingscreen
  A Stage = |= (30)N
   Active screen
     ⊞ Standard
          -EID Choose a number: IN( int first choice )
        OK OK
           subjects.do ( if ( int first guess < int hidden number) ( .
    Waitingscreen
```

### What did we do?

- 4 We defined a program, that sets 3 variables with values of a random number, 0 and an empty string.
  - These Variables are saved in the subjects table
  - These Variables can be accessed and changed throughout the whole game
- We created an input field as before, but
  - We overwrote the variable int\_first\_guess
  - We did not define a string
  - By telling layout to be 1, we required that the entered value is a multiple of 1.
  - By setting min and max we set boundries on the input value, not the length.

- 9 We replaced the Checker with a more complex program:
  - The Programm implements a case distinction.
  - The block in { } is only executed iff the condition after »if « hols
  - if it does not hold it checks the condition of elsif
  - if elsif does not hold it executes else.
  - The programm overwrote in each case str\_first\_guess

Note: You can write as many elif(...)... Statemants as you want after an if clause. You can write at most one else Statement.

- 3 Simple Single Player Experiments
  - The Instructions
  - The First Choice
  - Final Screen
  - Thank you for your attention

#### The Final Screen

- Click on First Choice
- Choose Treatment > New Stage > Type the name »Final\_Stage« and choose »no« for the timeout option
- 3 Choose Treatment > New Programm > Choose the Table subjects and type as program: Profit = 20 abs( int\_hidden\_number int\_first\_guess );
- 4 Create a new Standard Box
- Create an Item
  - Type in as LABEL: Your choice was
  - Type in as VARIABLE »str\_first\_guess\_was«
  - Type in as LAYOUT
- 6 Do the Same for the variables <code>wint\_hidden\_number(wand war)Profit(war)</code>

# Check what you did.

- We defined a program, that is executed at the begin of the stage. The programm overwrites the special Variable »Profit«.
  - »Profit« is a Variable that is integrated in zTree. You do not need to specify it like before.
  - »Profit« is responsible for calculating the Payoff for each Stage.
- Me show the Particpant the Variables, that we have stored in the Subjects table

- 3 Simple Single Player Experiments
  - The Instructions
  - The First Choice
  - Final Screen
  - Thank you for your attention

# Any Questions???

### Exercise

Copy the Folder zTree again, rename it to Exercise1 and implement following game:

- The game generates a hidden random number between 0 and 1
- The Player can enter an integer between 1 and 10.
- If the player chooses a number smaller than 5 he receives his Input as Profit.
- ... If the player chooses a number bigger than 5 he receives the double amount if the hidden random number is smaller than 0.5
- ... Else he receives nothing.